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ASYMPTOTIC SOLUTION OF BOUNDARY VALUE PROBLEMS 
FOR WEAKLY PERTURBED WAVE EQUATIONS* 

A.L. SHTARAS 

A method that is asymptotic with respect to the small parameter e is 
proposed for solving boundary value problems for weakly linear equations 
with partial derivatives. Linear travelling waves, defined when r&O, 
t&O and which only interact on the boundary z=O, are the solution of 
the unperturbed problems. An asymptotic solution which is uniformly 
suitable for t,r=o(e-1) is constructed for the perturbed problem using 
the method of averaging along the characteristics. A model problem of 
gas dynamics is considered - the problem of the motion of a piston in a 
semi-infinite tube. 

The problemsconsidered in this paper are usually solved by the method 
of regular expansion with respect to the parameter e /l, 2/. However 
this method leads to secular terms appearing in the asymptotic solution, 
which makes the latter unsuitable for values of the arguments t,~= O(E-~), 
But large values of t and t are more interesting when analysing weakly 
linear waves, since the non-linear, dissipative and other factors, which 
are usually disregarded iii the simplest linear models, begin to develop. 
Asympotic methods enabling us to solve Cauchy's problem fox the equations 
considered below were proposed in /3-6/. Boundary value problems of the 
"resonator" type were solved in /7, 0/. The technique proposed previously 
is modified below for problems in which r&O.. 

1. In practice, problems in which two travelling waves weakly interact are the ones most 
frequently analysed. Suppose the behaviour of these waves is described by problem 

rl+r,=ehfir,s,e], s,-sS,=eh[r,s,el, t>o, I>0 w 

*Prikl.!latem.F4ekhan.,50,4,589-596,1986 
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r (0, 5) = g, (x, E), s (0, 5) = $7, (5, El, x > 0 (1.2) 

r (t, 0) + us (t, 0) = h (t, E), t > 0 (1.3) 
Here fll f‘l are non-linear operators (algebraic, differential, integral, . ..). that are 

regular with respect to E in the neighbourhood of the point E = 0. The functions g,,g,,h are 
periodic with the period 11 and are also regular with respect to E. Both the initial data 
and the solution of the problem are assumed to be fairly smooth. In (1.1) and henceforth the 
letters t, x. 7, E, Y, 2, used as the lower indices, indicate the partial derivatives with respect 
to these variables. 

When E = 0 the solution of Cauchy's problem (l-l), (1.2) is uniquely defined in the 
domain D1 = (x> t> 0). In the domain D, = {t>.v> 0) the solution of problem (l.l), (1.3) 
which satisfies the condition of continuity of the function s(t,x) on the line x=t, is 
also uniquely defined. The differential properties of the solution of the linear problem 
depend on the properties of the functions gr, g,,h. In particular, the smoothness of the function 

r (t, x) on the line x=t follows from the matching conditions of the derivatives of the 
functions g,,g,, h at the point 0 /9/. 

Similar considerations are used to construct an asymptotic solution when E $= 0. Suppose 
the curve x = x,(t) = t-k q(&t), where x1(O)= 0 divides the domain D =: {t > 0, z > 0) into 
two subdomains or(&) and o,(e), which when E = 0 agree with the domains Dr,I), defined 
above. As will be clear from what follows, this division depends on the principal terms of 
the asymptotic solution, which is sought in the form 

r-Uio(rIY) f ti~leK[~~ti(T,Y) i- rlk(r,Y, 41 (1.4) 

s - 2fflo (T, Z) + kzl 8” @hi; (T, 2) -I- Slk (T, Y, z)] in Dl te) 

r-Z&0(7,%, Y) + Az,Ek[Qk(7t %,!I) + rkk (7, %I Y+$l (1.5) 

s - ~20 0, E, 4 + k.l CR Iak (t, %,4 + SW (7, E, Y, 41 in a W 

(T = Et, = EX, y=x-t, z=r+t) 

The substitution of (1.4) into (1.1) and the expansion of the operators jrrfe in powers 
of e reduces to the recurrent systems 

2r1,irAt,z= flk [vlO$ f&Ot . . . , hkt Wlkt rlkr Sik] - %r - rln-+ WI 

- 2.9;. k+l, y = f 4k[hO, WiO, . . * , Vlkr mlkt rlkr slkl - wlk? - %kr, k>O 

Here flk are coefficients for 8, obtained after expanding the operators fl, i = I,??. If 
we assume that the functions q,, wlo, . . ., VI*, wlkr rlk, s1k are already defined and periodic with 
respect to y and z with the period b, the conditions for the absence of secular terms in 
rl,~+l,sl,~+l (and their periodicity with respect to y and z) take the form 

<~(~.~))~=~j~(y,zjdz,<~(y,~))t=$*~P(y.z)dy 
0 0 

Eqs.(1.6) and (1.7) are supplemented by the initial conditions obtained after subsituting 
(1.4) into (1.2) 

L'lO (0, Y) = g, (Y, O), Y > 0; WI0 (0, 2.) = g, (2, O), z > 0 0.8) 

(1.9) 

bh g,k are the coefficients of the expansions with respect to e of the functions gl, &). The 
arbitrariness in choosing the initial conditions (1.9) does not affect the definition of the 
functions Urk + rrkr wrp f srk. since when k>'i Eqs.(l.7) are linear. The linearity of these 
functions also reduces to the fact that their solutions are defined whentheprincipaf term of 
the asymptotic solution is defined, i.e. v1ot w10. 

When k=O the first equation of (1.7) has the form 

U10r = Gl [UIO, Wo* 0) >I (1.10) 

Two cases are possible when defining the domain DI (e). 
lo. suppose the function Qo is defined when z) 0, y>Yr(i), where yr(r) is a fairly 

smooth function and Yr(0) =O. Then x1(&t)= Yrfet). This case occurs if, for example, fl is 
a non-linear function of r and s. We can then consider (1.10) as an ordinary differential 

equation with respect to r and y,(r)= 0. We can also define the function y,(z) in the 

case when fl is a first-order quasilinear differential operator. 
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2'. The domain of definition ofthe function v10 remains unknown, since there are not 
enough conditions (1.8) to define it unambiguously. This situation occurs in the parabolic 
case. For example, when fl = r,, Eq.Cl.10) takes the form vim = qW,,. However, we can then 
also assume that the curve y =~r(r), which is a free boundary for thedomainof definition of 
the function q,, exists. 

2. The expansion (1.5) is constructed in a similar way, with the sole difference that 
the following recurrence equations are obtained instead of (1.6), (1.7): 

2r,, ktl. I = flk [V20r w20, . . . , bk, %k] - Vzkr - hkt - rakr - rake 

- % k+l. II = fZk [VSO, WZO, . . . , r2k, sZk] - Wzkz + ?%kE -- sakr + &?kE 

(2.1) 

VZkr + vakE= (flk - hkT - %kdi 

WZkr - WzkE = :f’Ak - %kr -t %k&, k > o 

Substitition of (1.5) into (1.3) leads to the relations 

(2.2) 

r&l (7, 0, 4) + a&O (r, 0, t) = h (t, O), t> 0 (2.3) 

v2k (t, 0, -t) + a&k (t, 0, t) = 0 (2.4) 

r!zk (TV 0, --t, t) + %k h o,! -6 t) = hk‘(t), t > 0, k > 1 

There are not enough conditions (2.3), (224) to define the required functions uniquely; 
the continuity of s(t,x) on the curve x = x,(t) is therefore required in addition (by analogy 
with the linear case). The equation of this curve can be rewritten in the slow variables 
E = z _t EX~(Z), and the conditions of continuity take the form 

%k (.t, ‘I + =I b), 2) = wlk (z, z) 

%k tt, z +- exl b), 51 b), z, = Slk (7, xl b), z) 

(2.5) 

The conditions (2.5) are inconvenient for solution in practice, since they explicitly 
contain e. If the functions U)Zk, .$k are fairly smooth with respect to &we can expand them 
in a Taylor series, and can re-expand conditions (2.5) in powers of e. The conditions 

%k (r, 7, s) = Wrk (7, Z), k > 0, %r (7, 7, X1 (Z), 2) = S11 (r, tl (r), Z) - Wzg (r, 7, Z) 51 (r) etc., will be 
obtained. 

3. When justifying the above method it is natural to assume that the solution of the 
initial problem exists in the large domain O<t<toe-~,O<zg+,e-~ and the linearized problem 
(l.l)-(1.3) is stable with respect to the perturbations of the right-hand sides in (1.1). In 
this case the closeness of the exact and asymptotic solutions is proved using the standard 
method if the solvability of problems (1.6)-(1.9) and (2.1)-(2.5) is proved beforehand. A 
difference between case lo and Z" emerges here. 

In case lo problems (1.6)-(1.9) and (2.1)-(2.5) are solved sequentially and the solvability 
can be proved separately for the initial and boundary value problems. However the terms of 
the expansions (1.4) and (1.5) constructed in this way, or their derivatives, may be discon- 
tinuous on the curve z= X,(t), which hinders the estimate of the closeness of the exact and 
asymptotic solutions in the neighbourhood of this curve. In the simplest case, when f1* fr 
are non-linear functions and yl(~)=O, the curve Z= X,(t)~t is defined exactly and a strict 
justification of the asymptotic method is possible on the basis of /9/. 

In case Z" problems (1.6)-(1.9) and (2.1)-(2.5) for each number k should be considered 
simultaneously, assuming the curve Z= X,(t) (or y= vi(z)) is indeterminate and imposing 
additional requirements of smoothness on this curve. The solvability of the problem obtained 
(ananalogueofstefan'sproblem for the heat conduction equation) is non-trivial. 

4. Although the case of the interaction of two waves is much simpler, we can also 
generalize the above technique for n> 3 waves. suppose the behaviour of these waves is 
described by the problem 

nit + &nix = efi [u, el, i = 1, . . ., n, t > 0, 5 > 0 (4.1) 

ut(O,x)=gi(x,~), x>O, i=l,...,n (4.2) 

uj(t* O) + i=~*l.j'U'(f,O)=hj(t,e), t>O, j=l,...,m 

The numbers hl are numbered in decreasing order andtheinequality h, >O>h,+,, 1 <m-C 
n holds for some m; f, are non-linear operators that are active in u=(u,,...,u,,), such that 
the solution of problem (4.1)-(4.3) is periodic with respect to x with period A. For this 
periodicity, as follows from the above case e = 0, we need the periodicity of the functions 

gi with period A, the periodicity of the functions hj with period hjA respectively and 
the existence of the integral nfj, such that 
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?b, = flijh,, Vj=m+ l,..., n, Vi=1, ..,, m (4.4) 

In addition, to eliminate small denominators in the asymptotic solution we need to require 
(as in /3/) the existence of c# 0 and of the integral nij, such that 

~(l.~-k~)=rn~~A, i, j=1,. . . ,n (4.3) 

The constraints imposed guarantee the periodicity with respect to X of all the terms 
of the asymptotic solution. These constraints can be substantially weakened for non-periodic 
solutions (para.6). 

To construct an asymptotic solution of problem (4.1)-(4.3), it is assumed that the non- 
intersecting curves X = Xj(t)Zhj t + q(et), j = I, . . ..m exist, such that Xj (0) = 0 and O< 
x, (t) < f . . <zc2(t)<x~ (d)<m when t> 0. These curves divide the domain D into m + 1 sub- 
domains ~j(&(Ef,j = i,...,m f 1 where Lfy, (e) = (t > 0, X > X1 (t))~ Dj (8) = {t > 0s xj (t) < 5 < 

Xj__, (t)), j = 2, . ., m,Dm+l(e) = {t > 0, 0 < 5 < X, (tfb 
In each subdomain Dj(E) the asymptotic solution is sought in the form 

where the coefficients of the expansion in or(&) do not depend on f. The substitution of 
(4.6) into (4.1) and the requirement that there are no terms in Wij~ which are secular with 
respect to t lead to equations in Di (a) 

vijkr + hiuijh.t=(fik-"Wijf;r-hill)ijk~)i, i = 1,. . s 9 n (4.7) 

Wij, k+l, t = fik - Wijel- h$‘ijt~ - vijkr - hivijke, 52 > 0 (4.8) 

The coefficients of the expansion of the operator fi in powers of E are denoted by fik; 

(fik)i is the average of the function fik, calculated along the straight lines yi =x-_tt = 
const. Conditions (4.4) and (4.5) guarantee the periodicity of ,fik along the corresponding 
stright lines; therefore 

(F(t,X)>i=$jF(S.X-_i~+RiS)ds 
0 

To define the fUnCtiOnS Vijb,Wljk Uniquely, it is necessary to formulate boundary value 
problems for (4.71, (4.8). Cauchy's problem is formulated in the domain or(e), and the 
initial conditions are specified when z = 0, yi > 0 and derived from (4.2). If we have an 
malogueofcase lo,this problem has a unique solution and the function X,(et) can be defined 
using this solution. The values of the functions v&k, Wizk>i =&...,n, which equal those Of 
the corresponding functions vi16.1 WIlk when 5 = h,z f eX1 (r) , can be specified on the boundary 
X = X,(t) of the domain D%(e). In the same way, the agreement of the values of the functions 

vi. j+l. k and vijk, wi, jtl. k and Wijlc for 1 <i < n, i+j is required on the curves X = Xj(t) 
(or 5 = hj.c -1_ wj (z)), j = 2, . . ., m . Finally, when X = 0 (or $ =0) from (4.3) we obtain m 
boundary conditions for .v,, ,,,+r.&, Wi. ,,,+r,k, i = 1, . . .,?I&. 

In the case when fi are non-linear functions, the curves X = Xi(t), j = 1, . . ..m can be 
considered known (Xj(Z)Z 0), which considerably simplifies the solvability of the boundary 
value problem obtained. If fi are first-order quasilinear differential operators, the curves 
5 - xj (t). j = 1, . . .( m must be determined during the solution, i.e. ananalogue of case'2O is 
obtained. 

5. The proposed method can be applied to the problem of the 
semi-infinite tube filled with an ideal gas. The boundary value 
relations 

& + II, (R - S) R, = 0, S, - 9 (R - S’) Sx = 0 

motion of a piston in a 
problem is described by the 

(5.1) 

Here R and S are Riemann invariants, u is the velocity, p is the pressure, P,=const is 
the unperturbed value of the pressure, y>l is the index in the equationof state p = const*pr, 
and (1 is the specific density of the gas. The dimensionless Lagrangian coordinates t and x, 
are chosen in (5.11, such that li, = 1 when p = P,. 

Suppose the following boundary conditions are specified for (5.1): 
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u (0, 5) = eu, (5), p (0, 2) = PO + ep, (4, z 2-a 0, u (t, 0) = w (tL t > 0 

(8 < 1 is a parameter characterizing the smallness of the perturbations with respect to the 
state of equilibrium u = 0,p = PO). This problem was solved in /lo/ in the case when there 
are no initial perturbations (uo(r)=po(r)= 0), which led to a simplified version of the averaged 
equations obtained below for the principal term of the asymptotic solution. 

The change of variables R = er, S = es leads to the problem (l.l)-(1.3) with 

a = 1, h (t) = 224 (t) 

efI = [I - $ (e (r - s))l r,, efa = I$ (e (r - s)) - 11 s= 

g,,,=uo(z),~[(l+~)“--] 

(I (e (r - s)) = 1 + e$l (r - s) + 0 (es), $i = $$ 

In the domain D,(e) the principal terms of the asymptotic solution (1.4) satisfy the 
problems 

V10r + $1 (%l - <WlO>l) UlOJJ = 0, ho (0, Y) = uo (!I) + PO (Y) (5.2) 

WlO? + $1 (WI0 - <ho>*) WI02 = 0, WlO (0, 4 = uo (4 - PO (4 (5.3) 

The integration of Eqs.(5.2) and (5.3) with respect to y and z leads to the equations 
<w,o>1 = 61 = <uo> - <PO>, <%A = 6, = <uo> + <PO>, therefore problems (5.2) and (5.3) can be 
solved independently. Physically, this indicates that the principal terms of the Riemann 
invariants r and s do not interact in the domain DI(e). This behaviour is similar to the 
case of linear waves. But whereas linear waves preserve the initial smoothness, discontinuities 
that appear when r = ~~~ 0 or t = z,e-’ are formed inthe simple waves vlo,~Io from as many 
smooth periodic profiles as desired. 

Confining ourselves to smooth flows, we can construct the domain Dl(e) like the domain 
of determinacy of the solution of problem (5.2). The characteristic of Eq.(5.2) Y = Yl (7) 
which passes through the point (O,O), has the form Y,(z)= a,r,mwhere a1 = 211 (010 (09 0) - 6,). 

The following problem is solved in the domain D, (a): 

vzor + %lg + $1 (ho - <wz.o>,) %O!, = 0, E > 0, Y < 0 (5.4) 

WZOT - w,og + 91 (ho - <u*o>z) Wzot = 0, 0 < 5 < z (1 + (5.5) 
eaJ, z > 0 

we0 (7, z (1 + cad, z) = wlo (7, z), z > 0 (5.6) 

&o (7, 0, -Y) + %o (% 0, Y) = h (Y), Y > 0 (5.7) 

The waves vzO and we0 do not interact either, since the integration of (5.4) with respect 
to y, and (5.5) with respect to z reduces to the equations <w& = &, <v*~>~ = &. It follows 
from (5.6) and (5.7) that & = 6, and I& + i&=@(t)). Therefore problem (5.5), (5.6) is first 
solved, and ~,,(z,O,y) is defined, and then problem (5.41, (5.7). 

The projection of the pattern of Eq.(5.4), which passes though the point (O,O,O), on to 
the plane (5,~) has the form y, (5) = cc,E, where a, = lpl Ih (0) - wzo (0, 0, 0) - &I = *I [2u, (0) - 
wlo(O, 0)-&l. Consequently, the function v,, is defined when z >O, Es 0,y Q a&. However, 
the domain of determinacy of the function vao which is constructed in this way does not 
generally agree with D*(e)=DID,(e). Three cases are possible. 

1) uo(0) = u1(0) - the initial velocity of thegasat the point z = 0 agrees with the 
velocity of motion of a piston at the initial instant t = 0. Then a,= a, and the straight 
lines I,: y = y, (z), 1,: y = y, (5) in the plane (5, t) "almost" agree. In fact, the straight 
line I, is described by the equation x = (1 + ea,)t, and 1, is described by the equation 
x = (I- ea,)-‘t=(1 +ea,)t -I- e2a12t -I-... . Consequently, the distance between 1, and I, is the 
quantity 0 (e) when t = 0 (Cl). We can also remove this gap, however, if we modify expansion 
(1.5) slightly. 

Suppose 

where the constants qi, i >I are determined from the matching condition of the straight lines 
11, I,. The modification of the slow variable 5 does not alter Eqs.(5.4), (5.51, since the 
effect of the constants n1 develops in equations for v,~,~~k,r~~,~~k when kal. Therefore, 
we can determine the coefficient n from the equation 1 + &a1 = (I- eqa,)-’ and can obtain 
n = (1 + eaJ1 = 1 - ea, + eaccIz - . . . With this determination of n the equation x = (1 i- EU,)~ 
is written in slow variables in the form 5 = 7, which enables us to get rid of the parameter 
e under condition (5.6), which takes the form 

w.20 (z, z, z) = w10 (r, s), s > 0 
2) u,,(O)> ~~(0) - an extreme particle of the gas which is situated at the point z = 0 

when t = 0 breaks away from the piston. Then a,<a, and the line I, in the (z, t) plane 
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lies "below" the line 2,. Therefore, not one of the functions ~~~~~~~~ is defined in the 
sector L, formed by these lines. The value of the function 010 on the line I, equals 

y1 7: %I (0) + PII (O), and the value of the function u,~ on the line I,, equals Y, = ZU, (0) - u, (0) -I- 

p. (0) -c VI. In 
formula 

__ _ . 
the sector L we can supplement the definition of the function Go using the 

(5.9) 

Function (5.9) inside L satisfies Eq.(5.4), and takes the value 1'2 on the line L, and 

the following value on the line I,: 

(5.10) 

In this case the modification (5.8) does not enable us to prove the gap between the lines 

I,, 12, but its use eliminates e under condition (5.6) and removes the discrepancy in the 

boundary condition (5.10). The function (5.9) describes the rarefaction wave that appears at 

the point 5 = 0, t = 0. 

3) u0 (0) < u1 (0) - the piston moves faster and compresses the gas. Then a2 > aIt the 

line 1, in the (z,t) plane is "higher" then the line 1, and in the sector L the functions 

VlO. uzo define different asymptotic representations for the Riemann invariant r. This 

situation is impossible physically; we are obliged therefore to assume that the curve r= 

Xb (t), when passing through which VlO and I_+,, alter stepwise and which belongs to the sector 

L, separates the domains D, (E), D, (E). Suppose B G B (t) E I,’ (t), u+ (t) = u (t, x, (t) -+ 0), u- (t) = 
u (t, I, (t) - 0), [ul = u+ - u- etc. Then the conditions on the discontinuity for the initial 

problem have the form 
B [p-l] + [ul = 0, B hl = [pl (5.11) 

In the case of small perturbations B = +I + O(E). Since the discontinuity from the 

point (0,O) can only move to the right, 

B==l+~b (5.12) 

It follows, by substituting (5.12) into (5.11) and expressing u,p,p in terms of the 

Riemann invariants, that the functions WlOV %o are continuous in this discontinuity, and 

b = 9, ((vu,+ + ?~,-)/2 - %) + 0 (8). The equation for the line of discontinuity can be represented 

in the form 

(5.13) 

This equation shows that the Riemann invariants interact at the discontinuity (as on the 

bound I = 0) that is already of the zeroth order. 

In the simplest case lur,, = 6r = con& the principal part of Eq.(5.13) can be written in 

the form 

(5.14) 

where y = y.(r) is a line of discontinuity for v,,(z,y). In this case the functions vlO, v,, 

can be constructed independently of each other, and consequently the function y.(z) is 

obtained after solving the ordinary differential Eq.(5.14). 

A simpler situation was considered in /lo/: ml,, = wz,, = vrO = 0. In general the curve 

x=x,(t) can only be obtained after solving problems (5.2)-(5.7), (5.13), which is an analogue 

of case 2O from Sect.1, whilst an explicit dependence on e is not excluded in (5.13). 

6. The above technique was considered for periodic functions. Rowever averaging along 

the characteristics was also possible in the general case. Most of the results obtained in 

Sects.l-5 also hold in the classes of functions F(t,r) for which the following means - which 

are uniform with respect to t and z0 - exist: 

These can be conditionally periodic functions, and functions that are constant when 

I>+: or that approach constants fairly rapidly as s-1_ co. Quite interesting results can 

be obtained in these classes. 
For example, if generalized means in the initial and boundary functions exist in the 

problem from Sect.5, and the following inequalities hold: 

% (0) < % (O), I P; (2) I < u; (43 = s= 0 

2u, (t) > Wee* b, 0, 0, 7, t > 0 
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the principal term of the asymptotic solution is continuous for all t>O,z>O. 
The technique can also be used formally in the case when the functions fi in (4.1), ci 

in (4.2) and h+ in (4.3) depend on the slow variables r,&, or non-linear conditions that are 
solved with respect to the functions aj(t, 0), j= I,..., m are considered instead of the linear 
boundary conditions (4.3). 
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EQUATIONS DESCRIBING THE PROPAGATION OF NONiLINEAR QUASITRANSVERSE WAVES 
IN A WEAKLY NON-ISOTROPIC ELASTIC BODY* 

A.G. KULIKOVSKII 

Approximate equations are obtained, describing the propagation of a non- 
linear quasitransverse wave of low amplitude, or a group of such waves, in 
a nearly isotropic elastic medium, when the characteristic velocities of 
the waves (dependent on their polarization) differ from one another by a 
small quantity. 

The equations of non-linear geometrical acoustics, and the short-wave 
equations, are well-known /l-9/; they are obtained on the basis of the 
fact that waves connected with one family of characteristic surfaces can 
be propagated. Disturbances linked with other characteristics interact 
weakly with these waves, by virtue of the assumptions that the amplitude 
is small and the waves are quasiplane. It is also important that, due to 
the small difference in the wave velocities, their interaction time is 
small, if the length of the groups of waves in question is finite. 

With small anisotropy and non-linearity, the equations of the theory 
of elasticity have two properties: the two characteristic velocities 
corresponding to quasitransverse waves are close, and the non-linearity 
is extremely small. In the absence of anisotropy (including that due to 
initial deformation), the non-linearity appears only in the cubic terms; 
while if there is small anisotropy, quadratic terms also make an appearance, 
though with small coefficients. Due to the closeness of the quasi- 
transverse wave velocities, they interact together long-term, so that the 
evolution of these waves can be studied by considering two waves simultaneously. 
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